Examining the West African Monsoon circulation response to atmospheric heating in a GCM dynamical core
نویسندگان
چکیده
Diabatic heating plays a crucial role in the formation and maintenance of the West African Monsoon. A dynamical core configuration of a General Circulation Model (GCM) is used to test the influence of diabatic heating from different sources and regions on the strength and northward penetration of the monsoon circulation. The dynamical core is able to capture the main features of the monsoon flow, and when forced with heating tendencies from various different GCMs it recreates many of the differences seen between the full GCM monsoon circulations. Differences in atmospheric short-wave absorption over the Sahara and Sahel regions are a key driver of variation in the models’ monsoon circulations, and this is likely to be linked to how aerosols, clouds and surface albedo are represented across the models. The magnitude of short-wave absorption also appears to affect the strength and position of the African easterly jet (AEJ), but not that of the tropical easterly jet (TEJ). The dynamical core is also used here to understand circulation changes that occur during the ongoing model development process that occurs at each modeling centre, providing the potential to trace these changes to specific alterations in model physics.
منابع مشابه
Development and Application of a Mesoscale Climate Model for the Tropics: Influence of SST Anomalies on the West African Monsoon
A mesoscale climate model (MCM) is developed from the Pennsylvania State University/ National Center for Atmospheric Research (PSU/ NCAR) MM5 model to simulate the West African summer monsoon. Results from the MCM are compared to observations, a reanalysis, and GCM output to show that the MCM reasonably simulates the West African monsoon climate and its variability, and improves on many shortco...
متن کاملJournal of the Meteorological Society of Japan
We investigated the effects of large-scale orography on the tropical coupled atmosphere-ocean system over the Indian and Pacific Oceans in northern summer, using the Meteorological Research Institute coupled atmosphere-ocean General Circulation Model (GCM). Six different experiments were conducted with mountain heights of 100%, 80%, 60%, 40%, 20%, and 0% of the standard mountain height. The res...
متن کاملImpacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon
The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring a...
متن کاملIntermittent African Easterly Wave Activity in a Dry Atmospheric Model: Influence of the Extratropics
A dynamical model is constructed of the northern summertime global circulation, maintained by empirically derived forcing, based on the same dynamical code that has recently been used to study African easterly waves (AEWs) as convectively triggered perturbations (Thorncroft et al.; Leroux and Hall). In the configuration used here, the model faithfully simulates the observed mean distributions o...
متن کاملInvestigation of the atmospheric circulation anomalies associated with extreme rainfall events over the Coastal West Africa
This study investigates the atmospheric circulation associated with extreme rainfall events over the coastal West Africa. The rainfall data of this study were obtained from the Global Precipitation Climatology Centre (GPCC), spanning from 1981 to 2010. The atmospheric datasets were also obtained from the ERA-Interim reanalysis. The study employed the Z-Index to categorize dry and wet years into...
متن کامل